Why Feature Engineering
#shorts #youtube #reel #datascience #dataanalysis #code
#FeatureEngineering #MachineLearning #DataScience #AgenticAI #GenAI #DataAnalysis #TechJroshan #Informations
#AI #ML #DataAnalysis #Python #Statistics
#CareerInDataScience #100DaysOfML
๐ ๐พ๐๐ ๐ญ๐๐๐๐๐๐ ๐ฌ๐๐๐๐๐๐๐๐๐๐ ๐๐ ๐บ๐ผ๐ท๐ฌ๐น ๐ฐ๐ด๐ท๐ถ๐น๐ป๐จ๐ต๐ป ๐๐ ๐ด๐๐๐๐๐๐ ๐ณ๐๐๐๐๐๐๐?
๐ก โBetter features beat better models.โ
You can use XGBoost, Random Forest, or even Deep Learningโฆ
๐๐ณ ๐ณ๐ฒ๐ฎ๐๐๐ฟ๐ฒ๐ ๐ฎ๐ฟ๐ฒ ๐๐ฒ๐ฎ๐ธ, ๐ฟ๐ฒ๐๐๐น๐๐ ๐๐ถ๐น๐น ๐ฏ๐ฒ ๐๐ฒ๐ฎ๐ธ.
๐๐ฒ๐ฎ๐๐๐ฟ๐ฒ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด =
Transforming raw data into meaningful inputs that ML models can understand.
๐ช๐ถ๐๐ต๐ผ๐๐ ๐๐ฒ๐ฎ๐๐๐ฟ๐ฒ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด
Model accuracy is low
Overfitting / underfitting issues
Complex models fail
Business impact โ
โ
๐๐๐ฉ๐ ๐๐๐๐ฉ๐ช๐ง๐ ๐๐ฃ๐๐๐ฃ๐๐๐ง๐๐ฃ๐
Higher accuracy ๐
Simpler models perform better
Faster training
Real-world patterns captured
Real-Life Example
Date = 2026-02-10
Engineered features:
Day
Month
Year
DayOfWeek
IsWeekend
๐ Same data, more intelligence.
๐ง Feature Engineering Techniques
If you need Completed Features Engineering Technique please comment ๐ฌ YES
Industry Truth
1. Data Scientist spends ~70% time on Feature Engineering
2.Model building is just 3