๐จ๐ป๐ฑ๐ฒ๐ฟ๐ณ๐ถ๐๐๐ถ๐ป๐ด ๐๐ ๐ข๐๐ฒ๐ฟ๐ณ๐ถ๐๐๐ถ๐ป๐ด โ๏ธ
Machine Learning Overfitting vs Underfitting
#shorts #youtubeshort #interviewtips #ml #datascience
#ZeroToDataScience #machinelearningmagic #DataScienceInterviewQuestions #interviewtips #PythonForDqtaScience
(๐ถ๐๐ ๐๐ ๐๐๐ ๐ด๐ถ๐บ๐ป ๐๐๐๐๐
๐ด๐ณ ๐๐๐๐๐๐๐๐๐)
๐ด๐๐๐ ๐ด๐ณ ๐๐๐
๐๐๐ ๐๐๐๐ ๐๐๐ ๐๐๐๐๐๐๐ ๐๐ ๐๐๐๐๐๐๐๐๐๐
B๐๐ ๐๐๐๐๐๐๐ ๐๐๐๐๐ ๐๐๐๐๐๐ ๐๐๐ ๐๐๐๐๐๐
๐๐๐๐๐๐๐
.
๐ณ๐๐โ๐ ๐๐๐ ๐๐๐๐ ๐
๐ง ๐ป๐๐๐๐๐๐๐ ๐ซ๐๐๐ ๐๐ ๐ป๐๐๐๐๐๐ ๐ซ๐๐๐
1. Training Data
Used to teach the model
The model learns patterns from this data
๐ Think: Study material
2. Testing Data
Used to evaluate the model
Never shown during training
๐ Think: Final exam
โ ๏ธ ๐ผ๐๐
๐๐๐๐๐๐๐๐๐ ๐๐ ๐ถ๐๐๐๐๐๐๐๐๐๐
1. ๐ผ๐๐
๐๐๐๐๐๐๐๐๐
Model is too simple
Fails on training data โ
Fails on testing data โ
๐ง Meaning: Model didnโt learn enough
Example:
Linear model for complex data
2. ๐ถ๐๐๐๐๐๐๐๐๐๐
The Model is too complex
Performs very well on training โ
Performs poorly on testing โ
๐ง Meaning: Model memorized, not learned
Example:
Very deep model on small data
โ๏ธ๐ง๐ต๐ฒ ๐๐ผ๐ฎ๐น: ๐๐ผ๐ผ๐ฑ ๐๐ถ๐
1. Performs well on training โ
2. Performs well on testing โ
๐ This is where real ML works
๐ฏ One-Line Interview Answer
Underfitting means the model is too simple to learn patterns,
While overfitting means the model learns noise instead of general patterns.
๐ก ๐ญ๐๐๐๐ ๐ป๐๐๐๐